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Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation
systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS) with multigrid data assimilation developed in
Earth SystemResearch Laboratory (ESRL) inNational Oceanic and Atmospheric Administration (NOAA) has addressed this issue.
Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial
velocity observations. This study explores the application of 3-dimensional (3D) Doppler radar radial velocities with STMAS for
reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated
“typhoon” field is constructed and referred to as “truth,” fromwhich randomly distributed conventional wind data and 3DDoppler
radar radial wind data are generated.These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the
traditional 3D variational (3D-Var) analysis.The degree by which the “truth” 3D typhoon structure is recovered is an assessment of
the impact of the data type or analysis scheme being evaluated.We also examine the effects of weak constraint and strong constraint
on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon
structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

1. Introduction

Doppler radar has long been a valuable observational tool in
meteorology. Three-dimensional (3D) Doppler radar radial
velocity data can provide an opportunity to estimate both
horizontal and vertical velocities. Therefore, in recent years,
Doppler radar data assimilation for short-term numerical
weather forecasting or called nowcasting has become a
focal point of research [1–4]. Lots of techniques have been
developed to retrieve wind field from Doppler radar radial
velocity observations [2–24].

In Doppler radar radial velocity data assimilation used
in the above literatures, in a three-dimensional variational
(3D-Var) framework, a background error covariance matrix

is always needed to determine the spatial spreading of
observational information. It is well known that an analysis
field at different locations may have different correlation
scales [25], which are difficult to be estimated. Unfortunately,
the traditional 3D-Var always employs an empirical and static
background error covariance matrix and therefore usually
can only correct single-scale wavelength error. However,
the errors in short wavelength scales cannot be sufficiently
corrected until the long waves are corrected [25, 26].

To minimize the errors of long and short waves in turn,
a sequential 3D-Var approach has been proposed by Xie et
al. [25, 26], implemented by either a recursive filter [27]
or a multigrid technique [28] at Global Systems Division
(GSD) of Earth System Research Laboratory (ESRL) in
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National Oceanic and Atmospheric Administration (NOAA)
for a Federal Aviation Agency (FAA) project joined by the
research team from the Lincoln Laboratory in Massachusetts
Institute of Technology (MIT). Since this system also uses
the temporal observation information, it is called a Space
andTimeMesoscale Analysis System (STMAS, thereafter; see
Xie et al. [26]). The STMAS has been applied to assimilating
2-dimensional (2D) Doppler radar radial velocity data to
improve the wind field analyses [29].

Here, we study the analysis of 3D Doppler radar radial
velocities using the STMAS to reconstruct the 3D wind
structure. As for the first step, this study is performed
in a twin experiment framework. In the next section, we
first briefly review the theory of the multigrid 3D-Var data
assimilation scheme in the STMAS. Some important aspects
of the STMAS techniques such as smoothing, constraint, and
Doppler radar radial wind operators used in the cost function
of the STMAS multigrid 3D-Var are described. Section 3 first
introduces the twin experiment framework for 3D Doppler
radar radial wind data assimilation with the STMAS and then
gives the evaluation by comparing it to the traditional 3D-
Var. Section 3 also examines the performance of the STMAS
in weak and strong constraints for 3D Doppler radar radial
velocity analysis. Conclusions and discussions are given in
Section 4.

2. Smoothing, Constraint, and Radar
Radial Wind Operators in STMAS

In this study, the STMAS implemented by the multigrid 3D-
Var is applied to the analysis of 3D Doppler radar radial
velocities.Thismethod can extract long and short wavelength
information in turn efficiently from observations and provide
objective and accurate analysis. The basic idea of this multi-
grid implementation can be referred to Li et al. [28–30].

To assimilate 3D Doppler radar radial velocities, with the
control variables beingX(𝑛) = (U(𝑛)𝑇,V(𝑛)𝑇)𝑇, whereU andV
represent zonal and meridional components of wind vector,
the cost functional for the 𝑛th level grid is
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where the subscript 𝑏 denotes the background term and 𝑠 the
smooth term, 𝑐 the conventional observation data term, and
𝑟 the radar radial wind observation data term. The smooth
matrixes SU and SV in the smooth term are derived from
the Laplacian of control variables U and V, respectively, at
grid points. LetW represent the vertical component of wind
vector. The details of the conventional observation data term

and the 3D Doppler radar radial wind observation data term
are as follows:
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Θsin = diag (sin 𝜃1 cos𝜑1, sin 𝜃2 cos𝜑2, . . . ,

sin 𝜃𝑀 cos𝜑𝑀) ,
(4)

Θcos = diag (cos 𝜃1 cos𝜑1, cos 𝜃2 cos𝜑2, . . . ,

cos 𝜃𝑀 cos𝜑𝑀) ,
(5)

Φ = diag (sin𝜑1, sin𝜑2, . . . , sin𝜑𝑀) , (6)

where𝑀 is the amount of radar radial wind observations, 𝜃
is the azimuth angle of the radar beam relative to north with
positive clockwise, and 𝜑 is elevation angle of the radar beam.
Of course, since radar scans at nonzero elevation angles,
the fall speed of precipitation particles should be taken into
account, and the algorithm of Sun and Crook [6] can be
used to calculate terminal velocity. But for this study, we
just neglect this terminal velocity, which does not lose its
generality. The matrix O(𝑛)R is an error covariance matrix for
radar radial wind observation; its superscript −1 stands for
the reverse matrix, and its subscript R represents the radar
radial wind observation.

During the procedure of sequential multiscale analyses,
the operatorsO,Θsin,Θcos, andΦ remain the same when the
full observation dataset is used through all multigrid levels;
therefore, the superscript (𝑛) is omitted from these operators.

To make a strong constraint on these three components
of wind vector, incompressible continuity equation 𝜕U/𝜕𝑥 +
𝜕V/𝜕𝑦 + 𝜕W/𝜕𝑧 = 0 is employed and discretized to calculate
vertical velocity from the other two horizontal components.
The discretized incompressible continuity equation is as
follows:
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The adjoint codes are recursively developed for W repre-
sented by U and V.
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3. Simulation Methodology

3.1. Synthetic Typhoon Structure. The study domain covers
a 500 km × 500 km square region with 10 km thickness.
The Doppler radar locates at the center (250 km, 250 km)
of the study domain. A simulated typhoon field can be
constructed by using the following function which consists
of two subsection functions:

𝐹 (𝐿,𝐷, 𝑟) =

{
{

{
{

{

1, 0 ≤ 𝑟 ≤ 𝐷,

exp[−(𝑟 − 𝐷)
4

𝐿

4
] , 𝑟 > 𝐷.

(8)

This formula allows that the 2-order derivatives of this
function exist. Let 𝑟 = √(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 and 𝐺(𝑥, 𝑦) =
𝐴1𝐹[𝐿1, 𝐷1, 𝑟(𝑥, 𝑦)] + 𝐴2𝐹[𝐿2, 𝐷2, 𝑟(𝑥, 𝑦)], where 𝐴1 =

−5 km2s−1, 𝐿1 = 70 km, 𝐷1 = 15 km, 𝐴2 = −1 km2s−1,
𝐿2 = 20 km, and 𝐷2 = 2.5 km; then a stream function of
a two-scale typhoon field can be constructed. The amplitude
of one large-scale (𝐿1/2 = 35 km) is scaled by 𝐴1 and the
amplitude of one small-scale (𝐿2/2 = 10 km) is scaled by 𝐴2.
The locations of the maximum wind horizontal velocity of
these two scales are 4√0.75𝐿1 + 𝐷1 ≈ 80 km for large-scale
and 4√0.75𝐿2+𝐷2 ≈ 21 km for small-scale, respectively, from
the typhoon center.

The typhoon center (𝑥𝑐, 𝑦𝑐) is set at 300 km and 150 km.
Then, the stream function and velocity potential function can
be constructed as follows:
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𝐷3
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where 𝜀 = 0.5, 𝐿3 = 10 km, and 𝐷3 = 1 km. The horizontal
components can be expressed in terms of 𝜓 and 𝜒:
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In this study, incompressibility is assumed. And the true
vertical velocity field can be obtained by integrating the
continuity equation 𝜕U/𝜕𝑥 + 𝜕V/𝜕𝑦 + 𝜕W/𝜕𝑧 = 0. That is,
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where the bottom boundary condition is W(𝑥, 𝑦, 0) = 0.
The wind speed field in this simulated typhoon field contains
two different scale information. The first one is about 35 km
and the other is about 10 km.The radial wind, U component,
and V component pattern of middle level of this simulated

typhoon field and a section wind field across the center of
this typhoon are shown in Figure 1. This typhoon pattern is
located at the southeast part of the study domain, so only
the southeast square part is shown for the detailed structure.
This simulated typhoonwind field is referred to as the “truth”
typhoon field in this twin experiment.

3.2. Observations. Then, Doppler radar radial velocity data
are generated from the “truth” typhoon field with one-degree
azimuth angle increment and 2500m gate spacing and 2-
degree elevation angle increment from 1 degree to 20 degrees
by interpolating the “truth” velocity field to the radial velocity
observations’ points and using the equation YR = ΘsinΗU +
ΘcosΗV + ΦΗW, and the number of radial velocity data is
114480. Spatially coarse (1000), moderate (10000), and dense
(100000) random distributed conventional observations are
also generated, respectively, from the “truth” typhoon field
by interpolating the “truth” velocity field to the conventional
observations’ points.

3.3. Twin Experiments Setup. In the following, the above
observational data are used to retrieve the simulated
“typhoon” structure by the STMAS analysis method with
weak or strong constraint and the traditional 3-dimensional
variance (3D-Var) analysis with different correlation scales,
respectively, and by comparing the analyzed results with
the “truth,” performances of different analysis methods are
discussed.

The error variances of radial velocity observations and
conventional observations can be determined by the mea-
surement error of instruments. But, here for simplicity, the
same error variance is set for each kind of data. However,
because the amount of radial velocity data is much larger
than that of conventional data, a scaling scheme is used to
balance the weights of these two types of observations. Thus,
the conventional observation canhave the sameweight as that
of radial velocity observation, which may comprise these two
types of observations to get to a reasonable wind analysis.

The limited memory BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method [31] to solve the bound constrained opti-
mization problem [32] is used as the minimization method
in this study.

3.4. STMAS Results. Three level grids are employed ranging
from about 31.25 km × 31.25 km × 2.5 km (𝑛 = 1, and the
number of grids is 17 × 17 × 5) to 7.8125 km × 7.8125 km ×

0.625 km (𝑛 = 3, and the number of grids is 65 × 65 × 17)
with grid ratio being 0.5. The background is set to be zero for
simplicity. The conventional data will be added gradually to
investigate the impact of radar radial wind observations.

The STMAS analyses with the above 3D Doppler radar
radial velocity data or conventional data which vary from
coarse to dense are shown in Figures 2–4 and Table 1 gives the
corresponding root mean square errors (RMSEs). Because
the Doppler radar radial velocity data really provide some
useful information of radial wind, the STMAS results by
only using this type of data can make a good analysis on
radial wind (see Figure 2(a)) and the two-scale information
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Figure 1: The synthetic “typhoon” field (serving as the “truth”) at middle vertical level (5 km). (a) Radial velocity, (b) U component, (c) V
component, (d) wind vector, (e) W component, and (f) W distribution at an 𝑥-𝑧 section across the center of the synthetic “typhoon” with
black arrows representing wind vector at this section (unit: m/s).

Table 1: Root mean square errors (RMSE) of U, V, and W component in different experiments. MG RADAR represents the STMAS
results by only assimilating radial wind data. MG COARSE represents the STMAS results by assimilating only coarse conventional data.
MG RADAR COARSE represents the STMAS results by assimilating both radial wind data and coarse conventional data. MG MODERATE
and MG RADAR MODERATE are similar to MG COARSE and MG RADAR COARSE but with the conventional data substituted by
moderate conventional data. MG DENSE and MG RADAR DENSE are similar to MG COARSE and MG RADAR COARSE but with the
conventional data substituted by dense conventional data. MG RADAR DENSE WEAK is similar to MG RADAR DENSE but with weak
constraint. T50 RADAR DENSE represents the results of traditional 3D-Var with correlation scales being 𝐿𝑥 = 50 km, 𝐿𝑦 = 50 km, and
𝐿𝑧 = 5 km by assimilating both radial wind data and dense conventional data; T25 RADAR DENSE is similar to T50 RADAR DENSE but
for 𝐿𝑥 = 25 km, 𝐿𝑦 = 25 km, and 𝐿𝑧 = 2.5 km; T12 RADAR DENSE is similar to T50 RADAR DENSE but for 𝐿𝑥 = 12.5 km, 𝐿𝑦 = 12.5 km,
and 𝐿𝑧 = 1.25 km; T06 RADAR DENSE is similar to T50 RADAR DENSE but for 𝐿𝑥 = 6.25 km, 𝐿𝑦 = 6.25 km, and 𝐿𝑧 = 0.625 km.

Experiment RMSE of U (m/s) RMSE of V (m/s) RMSE ofW (m/s)
MG RADAR 15.7032 14.5197 2.3663
MG COARSE 9.2592 9.2195 1.4610
MG RADAR COARSE 7.9500 7.6029 1.3757
MG MODERATE 3.2196 3.1966 0.8228
MG RADAR MODERATE 3.0649 2.6148 0.7930
MG DENSE 1.0707 1.0849 0.5494
MG RADAR DENSE 1.0514 1.0135 0.5373
MG RADAR DENSE WEAK 1.0747 1.0254 2.0840
T50 RADAR DENSE 6.8944 7.1118 1.3832
T25 RADAR DENSE 2.8425 2.7135 0.8172
T12 RADAR DENSE 3.7725 3.6773 0.7787
T06 RADAR DENSE 10.2998 10.2631 1.3669

in radial wind has been captured by the STMAS. There is no
information of tangential wind, and no statistical or empirical
correlation information between U and V is used in this
study. Therefore, only using radial velocity data, the STMAS
analysis only can match the radial wind, and it cannot make
a good analysis on U and V. This leads to large U and V

RMSEs (15.7m/s and 14.5m/s, resp., see Table 1). With the
1000 coarse distributed conventional data only, the STMAS
analysis only shows the large pattern of the typhoon wind
(Figure 2(b)). With the combination of conventional data
and radar radial wind data, the STMAS analysis significantly
improves the typhoon structure (Figure 2(c)). The RMSE
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Figure 2: STMAS analyses at middle vertical level. From left to right, these columns represent radial wind,U component,V component, and
W component, respectively. (a) is the results by only assimilating radial wind data. (b) is the results by assimilating only coarse conventional
data. (c) is the results by assimilating both radial wind data and coarse conventional data (unit: m/s).

with the combined datasets is much smaller than the other
one with an individual dataset (Table 1). Apparently, the
radial velocity data provide additional information on radial
direction to help the STMAS capture the detailed typhoon
structure. If the conventional data change from the coarsest
(totally 1000) to the densest (totally 100000), the detailed
information on the typhoon is enhanced gradually (see Fig-
ures 2(b) and 2(c) corresponding to 1,000 conventional data
and 1,000 conventional data combined with radar data, resp.;
Figures 3(a) and 3(b) corresponding to 10,000 conventional
data and 10,000 conventional data combined with radar
data, resp.; Figures 4(a) and 4(b) corresponding to 100,000
conventional data and 100,000 conventional data combined
with radar data, resp.). With the combination of radar radial
velocity data and dense distributed conventional data, the
STMAS can make almost perfect analysis for the typhoon
structure (Figure 4(b)) and the RMSE is very small. And
because dense distributed conventional data provide enough
information, the RMSE improvements from theMG DENSE
toMG RADAR DENSE experiments are really negligible for
the three wind components.

3.5. Strong Constraint versus Weak Constraint. To compare
the performance of the STMAS with a strong constraint or
weak constraint, the continuity equation is added as penalty
term to make a weak constraint case (otherwise, the STMAS
analysis is a strong constraint of the three components of
wind vector). Then, the control variables become X(𝑛) =
(U(𝑛)𝑇,V(𝑛)𝑇,W(𝑛)𝑇)𝑇:

𝐽

(𝑛)
= 𝐽

(𝑛)

𝑏
+ 𝐽

(𝑛)

𝑠 + 𝐽
(𝑛)

𝑐 + 𝐽
(𝑛)

𝑟 + 𝐽
(𝑛)

constraint,

(𝑛 = 1, 2, 3, . . . , 𝑁) .

(12)

And background term is changed to

𝐽

(𝑛)

𝑏
=

1

2

U(𝑛)
𝑇
U(𝑛) + 1

2

V(𝑛)
𝑇
V(𝑛) + 1

2

W(𝑛)
𝑇
W(𝑛). (13)

The smooth term is

𝐽

(𝑛)

𝑠 = U(𝑛)
𝑇
SUU
(𝑛)
+ V(𝑛)

𝑇
SVV
(𝑛)
+W(𝑛)

𝑇
SWW(𝑛). (14)
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(b)

Figure 3: (a) and (b) are similar to Figures 2(b) and 2(c) but with the conventional data substituted by moderate conventional data (unit:
m/s).
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Figure 4: (a) and (b) are similar to Figures 2(b) and 2(c) but with the conventional data substituted by dense conventional data. (c) is similar
to (b) but with weak constraint (unit: m/s).
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Here, SW is smooth matrix forW component of wind vector.
The weak constraint term is

𝐽

(𝑛)

constraint = 𝛼∫(
𝜕U(𝑛)

𝜕𝑥

+

𝜕V(𝑛)

𝜕𝑦

+

𝜕W(𝑛)

𝜕𝑧

)

2

𝑑𝑥 𝑑𝑦𝑑𝑧,
(15)

where 𝛼 is the penalty coefficient for weak constraint. The
other terms, 𝐽(𝑛)𝑐 and 𝐽(𝑛)𝑟 , are the same as (2) and (3),
respectively.

Assimilating the whole simulated Doppler radar radial
velocity data and dense conventional data, the STMAS anal-
yses with continuity equation as strong constraint or weak
constraint are shown in Figures 4(b) and 4(c), respectively.
And the RMSE is shown in Table 1. The coefficient of penalty
term for weak constraint is set to 100.

As shown in Figure 4(b), the strong constraint forces
these three components of wind vector to exactly satisfy the
continuity equation. Then, while the horizontal components
can be analyzed very well, the vertical component is recon-
structed very well too. The weak constraint (Figure 4(c)) can
only constrain the horizontal and vertical components of
wind vector to satisfy the continuity equation to some degree.
Whereas the order of vertical velocities is much smaller than
that of horizontal ones and no direct observation of vertical
velocities is available, the minimization of cost function
primarily focuses on the horizontal parts. This causes little
improvement on the vertical velocities even if the horizontal
components can be well analyzed. Therefore, the vertical
component RMSE score of MG RADAR DENSE WEAK
experiment is worse than that ofMG RADAR DENSE exper-
iment. When a large penalty coefficient 𝛼 is used, although
vertical velocity analysis can be improved a little bit suffering
a lower accuracy of horizontal velocity, the accuracy of the
analysis vertical velocities is still not high.

3.6. STMAS versus Traditional 3D-Var. For a traditional 3D-
Var analysis, the cost function takes the form

𝐽 = 𝐽𝑏 + 𝐽𝑐 + 𝐽𝑟,

𝐽𝑏 =
1

2

U𝑇B−1U U + 1
2

V𝑇B−1V V.
(16)

For simplicity, here, we assume BU = BV = B, and no
covariance between the two horizontal velocity components
is considered. The background error covariance matrix B
takes the following form [33]:

B𝑖,𝑗 = 𝑎ℎ exp(−
Δ𝑥

2
𝑖𝑗

𝐿

2
𝑥

−

Δ𝑦

2
𝑖𝑗

𝐿

2
𝑦

−

Δ𝑧

2
𝑖𝑗

𝐿

2
𝑧

) , (17)

where 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 are characteristic length scales which
reflect the extent of spatial correlation; 𝑥 𝑦 and 𝑧 are coordi-
nates, and 𝑖 and 𝑗 are indexes of grid point; and 𝑎ℎ is the first-
guess error variance. 𝐽𝑐 and 𝐽𝑟 are similar to formulas (2) and
(3), respectively, but with an omitted superscript (𝑛). Strong
constraint is also imposed on U, V, and W component by
using discretized continuity equation. Tomake a comparison
with STMAS, the dense conventional data and Doppler radar
radial velocity data are all used.TheRMSE is shown inTable 1.

Based on Gaussian distribution, the traditional 3D-Var
using correlation scale usually constructs the background
error covariance matrix by an empirical correlation scale.
Therefore, the traditional 3D-Var with a certain correlation
scale only can analyze this kind of scale information. How-
ever, the “truth” typhoon field in this study contains two
different spatial scales wind speed information (∼35 km and
∼10 km).The traditional 3D-Var with 50 km horizontal corre-
lation scale can only capture themain pattern of this typhoon
field (i.e., the long wave information) but lose the small-scale
information and produce a smooth analysis (Figure 5(a)).
The traditional 3D-Var with 25 km or 12.5 km horizontal
correlation scale can capture some detailed information of
the long wave as well as major short wave information, but
detailed short wave information cannot be well analyzed
(Figures 5(b) and 5(c)). On the contrary, the traditional
3D-Var with 5 km correlation scale can analyze short wave
features but incorrectly treats long wave information. This
leads to an erroneous analysis (Figure 5(d)). The two scales
of this true typhoon field are 35 km and 10 km, respectively,
and the large-scale (35 km) component covers most of study
domain. In the experiment T25 RADAR DENSE, the hor-
izontal correlation scale is 25 km which is the closest to
the large-scale (35 km) of the true typhoon field among all
these traditional experiments; therefore, the horizontal wind
velocity analysis is the best.

From the vertical velocity distribution aswell as wind vec-
tor shown in Figure 6, we can further verify the above argu-
ment. Near the typhoon center, there are two branches of ver-
tical circulations on each side: one is narrow and the other is
broad, corresponding to four upwelling zones in this section.
Using the dense conventional data and Doppler radar radial
velocity data, the STMAS can analyze these sets of vertical cir-
culations and corresponding upwelling zones (Figure 6(a)).
However, the traditional 3D-Var with horizontal correlation
scales being 50 km, 25 km, or 12.5 km can only analyze two
(Figure 6(b)) or three (Figures 6(c) and 6(d)) upwelling
zones, since these kinds of correlation scales filter out the
small-scale information and merge these upwelling zones.
Although the traditional 3D-Var with 6.25 km horizontal cor-
relation scale can distinguish themiddle two upwelling zones,
it incorrectly treats the large-scale information (Figure 6(e)).

4. Conclusions and Discussions

Within an idealized simulation framework, the role of 3D
Doppler radar radial velocity data for reconstructing 3D
typhoon structures has been examined using the Space and
Time Mesoscale Analysis System (STMAS). A two-scale
simulated “typhoon” field is constructed and referred to as
“truth,” fromwhich randomly distributed conventional wind
data and 3D Doppler radar radial wind data are generated.
These data are used to reconstruct the synthetic 3D “typhoon”
structure by the STMASor the traditional 3D variational (3D-
Var) analysis. The degree by which the “truth” 3D typhoon
structure is recovered is an assessment of the impact of
data type or analysis scheme being evaluated. The effects of
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(d)

Figure 5: Similar to Figure 4(b) but with the results of traditional 3D-Var with correlation scales being 𝐿𝑥 = 50 km, 𝐿𝑦 = 50 km, and
𝐿𝑧 = 5 km (a); 𝐿𝑥 = 25 km, 𝐿𝑦 = 25 km, and 𝐿𝑧 = 2.5 km (b); 𝐿𝑥 = 12.5 km, 𝐿𝑦 = 12.5 km, and 𝐿𝑧 = 1.25 km (c); and 𝐿𝑥 = 6.25 km,
𝐿𝑦 = 6.25 km, and 𝐿𝑧 = 0.625 km (d) (unit: m/s).

weak or strong constraint on STMAS analysis have also been
examined. We found that (1) the STMAS is superior to tra-
ditional 3D-Var for reconstructing the 3D typhoon structure,
since the STMAS can retrieve multiscale information from
observational network. (2) The radial velocity data provide
additional useful information for the STMAS to reconstruct
the detailed structure of 3D typhoon field. (3) Compared to
a weak constraint, the strong constraint STMAS can produce
better analyses on both horizontal and vertical velocities of
the 3D typhoon structure.

This study gives us promising results. Challenges still
remain when 3D radar radial velocity data are assimilated
for the reconstruction and initialization of real typhoon
structures in the future. First, given the fact that the real
atmosphere is compressive, the wind vector may not satisfy
the nondiffusivity continuity equation used in this study.
Therefore, a full continuity equation should be used to make
a more general strong constraint in future study. Second, the
model error has not been taken into account in this study.
The influence of model errors on typhoon reconstruction
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Figure 6: Vertical velocity section (color shade) and wind vector in this section across the typhoon center. (a) STMAS; (b) tradition 3D-Var
with 𝐿𝑥 = 50 km, 𝐿𝑦 = 50 km, and 𝐿𝑧 = 5 km; (c) tradition 3D-Var with 𝐿𝑥 = 25 km, 𝐿𝑦 = 25 km, and 𝐿𝑧 = 2.5 km; (d) tradition 3D-Var
with 𝐿𝑥 = 12.5 km, 𝐿𝑦 = 12.5 km, and 𝐿𝑧 = 1.25 km; (e) tradition 3D-Var with 𝐿𝑥 = 6.25 km, 𝐿𝑦 = 6.25 km, and 𝐿𝑧 = 0.625 km (unit: m/s).

and initialization has to be addressed and how to deal with
model errors could be an important research topic in the
follow-up studies.
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